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AN IMPLICIT SEMIANALYTIC NUMERICAL METHOD FOR THE
SOLUTION OF NONEQUILIBRIUM CHEMISTRY PROBLEMS

By R. A. Graves, Jr., P. A, Gnoffo, and R. E. Boughner
INTRODUCTION

Many physical phenomena are modeled by systems of linear and/or nonlinear
ordinary differential equations (see for example references 1 to 5) which are
defined as stiff systems when a large spread in negative eigenvalues exists.
Such stiff systems commonly arise in nonequilibrium chemistry problems involving
kinetic and photochemical reactions. The governing equations for these stiff
systems are difficult to solve numerically using classical techniques because
the error growth is rapid, and unless the equations are integrated using a very
small time step, the results can be meaningless. To alleviate the problems
involved with stiff systems, a great deal of eftort has been expended in
developing numerical solution techniques, both explicit and implicit, for
stiff ordinary differential equations. References 6 to 9 review séme of the
more popular numerical methods and present the results of numerical comparisons

between the methods. A generalized conclusion resulting from the studies of

references 6 to 8 is that the implicit methods are more desirable because of
their increased stability and, in some instances, significantly fewer mathe- Eg
matical operations. In these and other studies, a rather simple (yet

——
fundamental) implicit technique was not investigated because these S

studies used a generalized equation which did not take advantage of

C e o— ——

o
W

N A°2il eug, x|
! Dist




the form of the governing conservation equation for chemical species. The
governing conservation equations for systems of chemical reactions can generally
be written in the form of first-order ordinary differential equations. These
equations can be solved by a simple implicit semianalytic technique which is
derived from a quadratufe solution of the governing equations. This method
is mathematically simpler than most implicit methods and has the exponen-
tial nature of the problem embedded in the solution.

The objective of this paper is to present the development of the semi-
analytic technique (SAT) and to compare its efficiency to that of several of

the more popular methods available.

SYMBOLS
a,b general coefficients, see equation (1)
Cl,C2 curve fit coefficients, see equation (5)
Ei,fé‘ curve fit coefficients, see equation (6)
HS vHerﬁite-Simpsoﬁ
Ry [Y, - Y(Xp)1/Y(Xn)
h ' step size'
RK4 fourth-order Runge-Kutta
DEQ Adams' fourth-order P-C
™ Treanor's method
DIFSYS modified midpoint rule
TR Trapezoidal rule
TR-EX Trapezoidal rule with extrapolation
CAL Calahan's method
- LWl Liniger-Willoughby - Method 1
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LW3 Liniger-Willoughby - Method 3

SAT semianalytic technique

A eigenvalue

Yn calculated value

Y(Xn) "exact valde"

£ transformed coordinate, see equation 3a

MATHEMATICAL DEVELOPMENT

The governing equation for the conservation of chemical species in
nonequilibrium chemically reacting systems can generally be written in the

form of a first-order ordinary differential equation (see ref. 10):

in

where a(t) and b(t) generally represent the loss and production rates of

species i, respectively. The solution of equation 1 in terms of quadratures

is: (This procedure is similar to that used in ref. 11.)

¢J+1 eI+l

-[  a(t)at J*1 -f a(t')de!
Y, =Y, e s [ btye © dt (2)
1 tJ

This equation can be further simplified by introducing the transformation

tJ+1
E = It a(t')dt'

d¢ = -a(t)dt

hence, equation 2 becomes:




+1 _ 1 & b)) -
Yi Yg e+ { ETE% e “dg (3)
where
tJ+1
= t)dt 4
&) {J a(t) (4)

" For the least complicated case, the coefficients a(t

can be approximated by linear functions.

) and b(£)/a(E)

a(t) = Cy +C, (t - tJ) (5)
where
c, = a(t))
c. 22T - ad)
2 At
bE) = . =
a(z) - C1 + CZE (6)
= b(0
where | » C1 f ETE%
b(&1) ) b(0)
T. - a1 a(0)
2 AE

It should be noted that due to the transformation from t to & that

b0) bt . b(g)) _ b))
a a(td+l) a(g) a(th)

Introducing equation 6 into equation 3 results in:

. £ i
Yi*l - Yi e *1 + [ 1 (Ei + Eéi)e gdg 7N

0
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This equation can now be integrated by parts to obtain the following semi-

analytic implicit result:

-E _ _
Yi+l = Yg e 1+ (C1 +C,)(1 -e ") -C,t.e (8)

(Note: To have stability and accuracy, it is necessary that -€1

e <1.)

Equation 8 is semianalytic in nature and includes the inherent exponential
behavior of the stiff problem directly in the solution. Equation 8 must be
solved implicitly (iteratively) as the constants 51, C,, and E} depend on the
conditions at the advanced time tJ+1.

An error analysis was performed, using the method of chapter 2 of refer-
ence 12, to determine the errors incurred in making thé linear approximations
for the coefficients a(t) and b(g)/a(E). The lowest order error terms are:

o (R A DR S O IRl S

where vy"(w) is the second derivative of the ratio b(£)/a(§¢) on the interval

o
A
€
A

< < 51 and R'"(n) is the second derivative of a(t) on the interval

e+l

[ 72
3
A

Numerical Experiments:

System I (ref. 8)

4
Yi = -0.04Y1 + 10 Y2Y3
" - _ 103 _ 7 2
YZ = 0.04Y1 10 YZY3 3 x10 YZ
" e 7 2
Y3 3 x10 Yz

YI(O) =1 YZ(O)-= 0 YS(O) =0

This system is nonlinear,and no exact solution for this system exists.
The eigenvalues, détermined from the Jacobian matrix of the system at X = 0

5




are A, =0, A\, =0and A, = -0.04. |A changes from 0.04 to 2405 for

1 2 3 max
0 < X £ 0.02. The eigenvalues for 0 < X < 40 are all strictly negative or
zero, with Al = 0, xz z --10"1 and AS z -103 to -104. The sharp increase in

the magnitude of ), makes this a particularly difficult stiff system to
work with. In addition this system presents some starting problems for SAT
since a2(0) = 0 and hence bz(El)/az(El) is meaningless. To circumvent this
problem for Y,, two techniques using constant h were tried: first, the
Hermite-Simpson method, reference 13, and secondly, the Runge-Kutta fourth-order
method. The RK4 start gave the best results. Table I gives the results for
this system on the CDC 6600 as well as the results of Lapidus and Seinfeld,
reference 8, for the IBM 7094. (The CDC 6600 is approximately 10 times faster
than the IBM 7094.) It should be noted that due to the nature of this system
YS(X) was calculated by YS(X) =1 - YZ(X) - Yl(X).

The most successful application of the SAT was to use the RK4 one step
to obtain Y1(0.0005), Y2(0.0005), and YS(O.OOOS) and then use the SAT with

a step size of 0.2 to compute the solution from 5 X 10-4 < X £ 40. As can be

seen in figures 1 and 2 the linear approximation for "b(g)/a(g) is very

accurate for this system.
System II (ref. 8)

Y' = =200 (Y - F(X)) + F'(X)

Y(0) = 10

F(X) = 10 - (10 + X)e X

Exact Solution Y(X) = F(X) + 10e 200X

Here, F(X) is a slowly decaying solution component and 10e'200x

decays
rapidly. The large negative eigenvalue of -200 makes exp(-200X) negligible
compared to exp (-X) in the F(X) component. Results using SAT on the

CDC 6600 are compared to results obtained by Lapidus and Seinfeld in Table 2.
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At equivalent step sizes, SAT produced Rn less than or equal to the error
encountered using other methods, and worked faster than any other method (times
for this system are based on computing over a range 0 < X g 15)

System III (ref. 8)

Y] = -0.1Y, - 49.9Y,

Y} = -50Y,

Yy = 70Y, - 12074

Y,(0) = 2 Y,(0) = 1 Y;(0) = 2

- Exact Solution:

Yl(X) - e-O.lX . e-sox

YZ(X) - e-SOX

YS(X) - e-SOX . e-lZOX

Eigenvalues Al = -120, AZ = =50, XS = -0.1

Because the solution components due to Al and A, decay rapidif, a

stiff method which was not restricted by the magnitude of these values is

desired. The SAT (which yields the exact solution of YZ(X) for any h since
the linear approximation to a(X) and b/a(g) gives the true variation

of these functions) is compared to results obtained by Lapidus and Seinfeld in
Table 3. An h = 0.01 produced results which were better than the results
obtained by any other method. However as the step size increased, the

accuracy dropped off rapidly and at an h = 0.2, the solution was very different

from the exact solution (except, of course, for Yz(x) which remained exact).




After examining the problem, it was found that on an interval
of 0% %0.2, with h = 0.2, the linear approximation to b/a(f) was
very poor. For example, b/a(X) = -400e °%  and bi/az(X) = (70/120)e'50x
(see fig. 3). The effect of these terms on b/a(f) decays rapidly after
X = 0.2, and they can be approximated by a linear function, so a method was

tried using h = 0.01 to arrive at X = 0.2 and then proceed from X = 0.2

with h = 0.2. This method was the fastest and yielded reasonable results.

System IV
' 2 7
Y] = 0.8Y, - 0.01Y] - 107Y,Y,Y, + 10v,Y, - 100Y,Y,
Y' = -0.8Y. - 10Y.Y. + 10%v.y, +10% .y
2 -8Y, 173 2Y4 1Y4
v o_ 2 7 2 4
Y, = 0.01Y2 + 107Y,v,, + 2000v; - 10%Y Y,
Y' = -10%.y, + 100v,Y. - 20000Y°
4 2Y4 1Y2 4

Y, (0) = 0.9;  Y,(0) = 0.05;  Yg(0) =0.05;  Y,(0) =0

No exact solution for this nonlinear system was obtained. The eigenvalues
for this system, calculated from the Jacobian using values of Y from RK4,

are widely separated in magnitudes. All of the eigenvalues are negative or

6 <X <7.3 x 1076, Typical values on the range are

at X=7x10 ", ll = -1,017 x 105, Az = -4,979 x 104, AS = -2.7102 x 101

Ay = -2.515 x 10'9. Results for this system appear in Table 4. This system

=0 on a range 6.146 x 10~

6 and

was only stiff for a short time and none of the methods had problems with
stability on a range 0 < X < 2 x 10-5. Using RK4 with h =1 X 10‘8' as a
standard 6f comparison, the tables indicate that for any given step size, RK4
was more accurate than any implicit method. SAT gave accuracy comparable to

other implicit methods and ran at approximately the same speeds as these

methods for equivalent step sizes. In this system, SAT showed no advantage
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over any other method. However, this system does indicate that SAT gives

reasonable results for nonstiff nonlinear systems.
CONCLUDING REMARKS

As developed herein the crucial approximation is the linearization of
Fhe coefficients within the integral in the quadrature form which allows the
semianalytic form to be obtained. In some cases this approximation is very
good but in some applications, the linear approximation can be in error for
what appear to be not unreasonable time steps. As demonstrated, this problem
was overcome by having a variable time step which is small in the region where
the Linear Appfoximation is in error.

Additionally, quadratic and exponential curve fits were tried. However
these approximations produced results which were approximately equivalent to
those obtained with the linear approximation. Because the linear approxima-
tion was the simplest to program and because of the consistently good results
it yielded, it was chosen as the most desirable approximation evaluated.

An important feature of the semianalytic technique is that it will allow
the computation of nonequilibrium chemical systems to and including the equi-
librium state. For systems where the rates are large (typical of ‘approaching
equilibrium) the SAT equilibrium condition is the exact solution for
equilibrium.

" As demonstrated in the example problems, the semianalytic technique is
. both rapid and accurate and should be applicable to those stiff problems which

can be modeled by an equation like that used in this development.




10.

11‘

12.

13.

REFERENCES

Emanuel, G.: Problems Underlying the Numerical Integration of the
Chemical and Vibrational Rate Equations in a Near Equilibrium Flow.
Report AEDC-TDR-63-82, Arnold Engineering Development Center,
Tullahoma, Tenn., 1963.

Amundson, N. R. and Luss, D.: Qualitative and Quantative Observations
on the Tubular Reactor. Canadian Journal of Chemical Engineering,
Vol. 46, page 425, 1968.

Kalman, R. E.: Toward a Theory of Difficulty of Computation in
Optical Control. Proceedings IBM Scientific Computing Symposium on
Control Theory and Applications, 1966.

Brayton, R. K., Gustavson, R. G., and Liniger, W.: A Numerical Analysis
of the Transient Behavior of a Transistor Circuit. IBM Journal
Research Vol. 10, page 292, 1966.

Gelinas, R. J.: Stiff Systems of Kinetic Equations -~ A Practitioners
View. Journal of Computational Physics, Vol. 9, page 222, 1972.

Lomax, Harvard; and Bailey, H. E.: A Critical Analysis of Various
Numerical Integration Methods for Computing the Flow of a Gas in
Chemical Nonequilibrium. NASA TN D-4109, 1967.

Seinfeld, J. H., Lapidus, L., and Hwang, M.: Review of Numerical
Integration Techniques for Stiff Ordinary Differential Equations.
Industrial and Engineering Chemistry Fundamentals, Vol. 9, page 266,
1970.

Lapidus, L. and Seinfeld, J. H.: Numerical Solution of Ordinary
Differential Equations. Academic Press, New York, 1971.

Liniger, W., and Willoughby, R. A.: Efficient Integration Methods for
Stiff Systems of Ordinary Differential Equations. SIAM Journal of
Numerical Analysis, Vol. 7, page 47, 1970.

Ashby, R. W.: A Non-Equilibrium Photochemical Model of the Stratosphere.
Master of Science Thesis, University of Wisconsin, 1972.

Dennis, S. C. R.: The Numerical Integration of Ordinary Differential
Equations Possessing Exponential Type Solutions, Proceedings of the
Cambridge Philosophical Society, Vol. 56, p. 240, 1960.

Schied, F.: Theory and Problems of Numerical Analysis, Schaums Outline
Series, McGraw-Hill Co., New York, 1968.

Watanabe, D. S., and Flood, J. R.: An Implicit Fourth Order Difference

Method for Viscous Flows, Coordinated Science Laboratory, University
of Illinois, Urbana, Il1l., UILU-ENG 72-2233, Report R-572, June 1972.

1o




6° - p-0TXT ') ¢ OTXTE T{4-0TXZ9"T|g_0TXV0°6|5_0TX96" €| _0TXL6" T £°0 udy3 | (3I83S PHY)
1°0 =X 03 S000°0 VS
£v° 1 - g-0TXpY ¥ -0TXL6 T |g-0TXPL T|,_0TXZ9 T |g-0TXIE"T o-oﬁxowhm 2°0/5000°0 |(3xB3S ¥HY)
1vs
1 - p-0TXEE 9} 7 0TX88°T|(-0TXS6" T |¢-0TXSZ T |-0TXZV Z|g-0TX6L S 1°0/100°0 | (3xe3s SH)
Ivs
Lg - p-01XZS°9) - OTXL8° 1|, 0TXL6" T |g-0TXSZ 1 ](-0TXpS Z|g-0TXL0 100°0 (3xe38 SH)
: Lvs
891 - 7-01%X59°€[c_0TX99°T{7-01X98°Z |,-01X9Z" T [£-0TX88° 9| ¢-0TX5"Z 100°0 SH
L0z - 0 0 0 0 0 0 5000°0 2.t
£°€C | ¢-0IX6'T{ .0TXY| ¢ OTXT'T| ¢-01X6°Z| g-0TXT"L| 4,-0TX6°S z°0 EMT
- 0Z | p-0TXp°v| ¢-0IXZ'E) p-0IXE T| p-0TXp°Z| p-0TX6°¥| 1-0TX9° T Al IMT
- 0T | {-0TXy°S|1-01XZ9°1| [-0TX0'9| OTXS'Z|{-O0TXTO"T| ¢-0TXp°Z| Z0°0/500°0 VD
- ve | ¢-0TXZ°T} 4-01X8°9| -0TXE'¥| z-0TXS"E| y-01X9°€|g-0TXZL"T z°0 Xd-4L
- £°6 z-0TXS°T  -_01X6| {-0TXy°Z|1-0TXZ1°Z|c-0TXS0"T|c-0TXSE T z'0 A
- - - - - - - - 100°0 Sisd1a
- - - - - - - - 10°0 AL
- - - - - - - - 100°0 daa
- - 0 0 0 0 0 0 100°0 2.t
0099 D@D |¥60L WAI| OT =X | +v0=X{ OT =X | %0=X] OI=X| v°0=X
y POY3IoN
J9s ‘awt] zmm zNz zE
I WALSAS ¥0d SLINSTY 40 NOSIUVAWOD -1 T18VL

-

11




a1qeisun (e)
60°0 - g0l X T'¥ [, 0T X 5576 A1) LVS
- 14 g-01 X 06 [ _ 0T X 81 20 SMT
- € g-0T X 0°S | 0T X T°1 z°0 M1
- 1 g-0l X 0'v| , 0T X /'T(Z°0/10°0| 1V
- 9¢ g-01 X 0°T [ . 0T x -1 z'0 X3-4L
- 4 g-0T X €7 |, 01 X581 z°0 A
- (e) (e) (e) 1°0 SAS4Ia
- S°91 g-01 X 0°T | o 01X L9 z°0 WL
- 81 01 X0°2] 0T X0°S}| 500°0 ok (4
- 1 60T X 02| 0T x0T 10°0 2.8
P98 feunLfoss femri| . _ g b0 = X u | poyis
0099 20D | ¥60L WAl

I1 WALSAS ¥0d SLINSTY 40 NOSINVANOD -*C 19Vl

Ao

12




L2’0 - Noﬁ X ¢°S 0 N..oﬂ X 80°¢C N-oa X ¢€1°C 2°'0=XI01F8 Z°0
_ 20 =X 03 10°0
1vVS
- ¢ moH X 0°¢S moH X 0°S N-oﬁ X 1°1 m-oH X0y 20 ™1
- . - x L] x . . .
1 moﬁ X 9°1 moﬁ X G6°¢ w.oa LT m-oH 0'zcjzo/10'0 TvD
- 0¢ Hoﬁ X0°8 aoﬁ X L'S v-oa X 1°8 m'oH X0ty Z°0 « Xd-4l
[32]
- . . . x . . . o~y
€1 moﬂ X ¢t noﬁ X §°9 ¢'o~ L°C mnoa X0'1 A (] Ul
- 44 Noﬁ X ¢'8 H-cH X $°6 vuoﬁ X0o1°¢C v-oﬁ X 0°'S 1°0 SASdId
- x - x L] x . x . .
1 moﬁ rAN mo~ 1°1 v-oﬁ SE°1 v-oﬁ U 4 0 WL
- 1 %4 moﬁ X p°L ﬁuoa X §°6 n-oﬁ X 1°8 w-oH X002 10°0 baa
- 114 a-oﬁ X 0°¢€1-0T X 0°¢ L-0T X $°S | ,.0T X 0°C 10°0 128
0099 DAD } ¥60. WHI v°0 =X v°0 =X 0T = X 0 =X
Ng N N Y POY3IoK
J9s ‘ouir] |[o9s ‘oumrt] d Nx Ty

III WALSAS ¥0d SLINSTY 40 NOSIYVAWOD -°S T4Vl




- . x . x L] K . x L] L) L) .
g-0TX¥ZE T _OTX0S° T} 0TX86°8[ O0TXSLS| o 01X0°9 g-0T¥9"T) o 0TX29°6], 0TXS9°y| 6ST°0 | . 0T | 1IvS
x . . x . x . x . x . . . .
p-CTXIL'S) _OTX8Y"p) o OTX8Y'6( 0TXY0°C|, 01XZ8"S p-0TX06°S [ 0TXLy S| . 0TXP6"T £V |g-01XS| 1Ivs
- L] x - x L] x . - . L]
g-0T¥6°8[, OTXEL 6|, 0TX65°6| . _0TX¥Z'S g-0TX0"T 0 g-0TXT L1, 0TXL9°p) 22170 | g 0T | davuL
0 §-0TXIE"Z 0 9-01X9s°Z| o 01X8 0 0 0 11°9  |g-0TXZ| dwvil
x * L] x L] K . L] ) L ]
p-0TX9T | 0TX8E T [, OTXTZ'¥ | _OTX¥2'6] 0 0 ¢-OTXII S |y OTXLT 6] 85070 | o OT | #¥d
0 0 0 0 0 0 0 0 ¥6°Z | o OT | MY
§-0TXZ=X| 9-0TXT=X| g.0TXZ=X| g_O0TXT=X| g_0TXI=X | 9-0TXT=X| g.0TXZ=X| ¢-0TXT=X| 0099 D@D
- Yy {poy3an
N N N N d9s ‘amt]
¥ £y %y Ty

AI W3LSAS ¥0d SLINSTY 40 NOSIYVAWOD -'t I19VL

14




40 x 10 3.2 24 & 16 0.8

0
m | 1 L R
107 B
-G
om r
b/a
cw u
<O TRUE VARIATION
Q4
— LINEAR APPROXIMATION
-(B L 1 1 L
.10 -12 114 X llG 018 'm
a) Reaction 1
112.2 89.8 .5 £ 45,1 2.6 0
3.60
O TRUE VARIATION
3-% ’
— LINEAR APPROXIMATION
3.5%
b/a x 10'°
3.5
3.52
‘\.<
3.% 1 i | 1
10 T2 4 X .16 J18 .20
b) ReacTion 2

FiGure 1. VARIATION OF (a/b) ror SysteM I IN THE INTERVAL .1< X< .2,




4.0 x 103 3.2 2.4 e 16 0.8 0
657 T T ' T
b/a 5% L
< TrRUe VARIATION
— LINEAR APPROXIMATION
‘GQS 1 1 1 i
3.9 33,9 39.9% X  30N% 3.9 40.00
a) Reaction 1
311.6 29,3 186.9 £ 14,7 &2.3 0
g.m [ L ¥ T -
b/a ‘x 10*6 gllg -
<O  TRUE VARIATION
—— LINEAR APPROXIMATION
9118 1 1 | 1
Eim 39.% X Sgum 39.% 390% tn'm
b) Reaction 2

FIGURE 2, VARIATION OF (b/2) FoR SysTeM I IN THE INTERVAL 39.9< X< 40.0.




P —

'[I1 WALSAS ¥0d (e/q) 40 zo:<~m<> '¢ M4

NOILWWIXQUddy UVINIT

NOLLVINVA 3]

T NOLLVIY (e

x .
T 0

e/q

:

NOLLVINVA 3]

e/q

NOILWWIXOtddy/ dVaNIT]




